Тест по теме «Перпендикулярность плоскостей по геометрии»

Тестирование – это мощный инструмент для оценки усвоения материала. Оно не только помогает выявить пробелы в знаниях, но и дает возможность скорректировать процесс обучения, повысив его результативность. Мы приготовили для вас тест, который поможет проверить уровень ваших знаний по теме. Проходя его, вы сможете оценить свою подготовку на данном этапе обучения.

Приглашаем вас пройти тест "Перпендикулярность плоскостей по геометрии" и убедиться в своих знаниях. Это отличная возможность оценить свой текущий уровень подготовки и подготовиться к дальнейшему обучению.



Расскажи друзьям
1 Гипотенуза прямоугольного равнобедренного треугольника лежит в плоскости α, а катет наклонён к этой плоскости под углом 30°. Найдите угол между плоскостью α и плоскостью треугольника



2 Катет AC прямоугольного треугольника ABC с прямым углом С лежит в плоскости α, а угол между плоскостью α и ABC равен 60°. Найдите расстояние от точки В до плоскости α, если AC = 5 см, AB = 13 см



3 Общая сторона AB треугольников ABC и ABD равна 10 см. Плоскости этих треугольников взаимно перпендикулярны. Найдите CD, если треугольники равносторонние



4 Из вершины В треугольника АВС, сторона AC которого лежит в плоскости α, проведен к этой плоскости перпендикуляр BB1. Найдите расстояния от точки В до прямой AC и до плоскости α, если AB = 2 см, ВАС = 150° и двугранный угол ВАСВ1 равен 45°





5 Плоскости α и β взаимно перпендикулярны и пересекаются по прямой a. Из точки М проведены перпендикуляры МА и МВ к этим плоскостям. Прямая а пересекает плоскость АМВ в точке C. Найдите расстояние от точки М до прямой a, если АМ = m, BM = n



6 Общая сторона AB треугольников ABC и ABD равна 10 см. Плоскости этих треугольников взаимно перпендикулярны. Найдите CD, если треугольники прямоугольные равнобедренные с гипотенузой AB



7 Точка A находится на расстоянии 1 см до одной из двух перпендикулярных плоскостей. Найдите расстояние от точки A до второй плоскости, если расстояние от A до прямой их пересечения равно √5 см



8 Плоскости α и β взаимно перпендикулярны и пересекаются по прямой L. Точки A и B лежат на прямой L, АС и BD - перпендикуляры к этой прямой, проведённые в плоскостях α и β. Найдите CD, если AC = 9 см, BD = 12 см, AB = 20 см



9 Плоскости α и β перпендикулярны. В плоскости α взята точка А, расстояние от которой до прямой с (линия пересечения плоскостей) равно 0,5 м. В плоскости в проведена прямая b, параллельная прямой с и отстоящая от нее на 1,2 м. Найдите р



10 Ортогональные проекции треугольника ABC на две взаимно перпендикулярные плоскости являются правильными треугольниками со сторонами 1. Найдите периметр треугольника ABC , если известно, что AB = √5/2







Комментарии (0)

Вы будете первым.


Написать комментарий